Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23050036-6    https://doi.org/10.11896/cldb. 23050036
  金属与金属基复合材料 |
长期时效对镍铁基高温合金组织和冲击韧性的影响
李力敏*, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇
西安热工研究院有限公司,西安 710054
Effect of Long-term Heat Treatment on the Microstructure and Impact Toughness of a New Ni-Fe Based Superalloy
LI Limin*, DANG Yingying, HUANG Jinyang, LIU Peng, LI Pei, LU Jintao, YUAN Yong
Xi’an Thermal Power Research Institute Co., Ltd., Xi’an 710054, China
下载:  全 文 ( PDF ) ( 37986KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高参数超超临界机组是未来火电技术的核心研究和发展方向,新型镍铁基高温合金HT650T(GH4650T)是650 ℃等级机组过热器、再热器用重要的候选材料,本研究将固溶态HT650T合金管材分别置于650 ℃和700 ℃进行0~10 000 h的等温时效实验,分析了时效过程中合金强化相、晶内和晶界碳化物等微观组织以及室温冲击韧性的变化趋势。结果表明:时效过程中合金主要强化相γ′相的粗化受基体元素扩散控制,粗化动力学遵循Lifshitz-Slyozov-Wagner熟化规律。随时效时间的延长,晶界MX相的变化不明显,M23C6析出量增多且宽化,晶界碳化物在时效至10 000 h仍保持不连续的形态,未发现有害相析出。室温冲击韧性的下降与晶界碳化物的粗化具有关联性,时效后期冲击韧性趋于稳定,表明HT650T具有良好的组织和性能稳定性,研究结果可为HT650T合金的工程应用提供理论和实验依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李力敏
党莹樱
黄锦阳
刘鹏
李沛
鲁金涛
袁勇
关键词:  镍铁基高温合金  长期时效  组织稳定性  冲击韧性    
Abstract: High-parameter ultra-supercritical unithas been the core research and development direction of future thermal power technology, and the new Ni-Fe based superalloy HT650T(GH4650T)is an important candidate material for superheater and reheater of 650 ℃ grade unit. In this work, the unstressed exposure tests were conducted at 650 ℃ and 700 ℃ for 0—10 000 h, respectively. The microstructure evolution of the strengthening phases, intergranular and grain boundary carbides and the trend of impact toughness at room temperature during aging process were analyzed. The results showed that the coarsening of γ′ phase was controlled by the diffusion of the matrix elements, and the growth kinetics followed the Lifshitz-Slyozov-Wagner ripening law. The grain boundary MX phase did not change significantly with the aging time, and the precipitation of M23C6 increased and widened. The grain boundary carbide remained discontinuous at 10 000 h after thermal exposure, and no harmful precipitates were found. The decrease of impact toughness at room temperature was related to the coarsening of crystal boundary carbide, and the impact toughness tended to stabilize in the later stage of aging, indicating that HT650T has good stability in microstructure and properties. The research can provide theoretical and experimental basis for engineering application of HT650T alloys.
Key words:  Ni-Fe based superalloy    long-term exposure    microstructural stability    impact toughness
发布日期:  2024-10-12
ZTFLH:  TG141  
基金资助: 中国华能集团有限公司科技项目(HNKJ20-H41);西安热工研究院有限公司研发基金项目(TA-20-TYK03,TA-23-TYK04);国家自然科学基金(52271070);陕西省自然科学基础研究计划项目(2023-JC-QN-0406)
通讯作者:  *李力敏,通信作者,工学博士,西安热工研究院有限公司研发中心工程师,2021年西安理工大学材料物理与化学专业博士毕业后到西安热工研究院工作至今,目前主要研究领域为电站高温材料的研发。在国际材料类学术期刊上发表论文10余篇。lilimin@tpri.com.cn   
引用本文:    
李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
LI Limin, DANG Yingying, HUANG Jinyang, LIU Peng, LI Pei, LU Jintao, YUAN Yong. Effect of Long-term Heat Treatment on the Microstructure and Impact Toughness of a New Ni-Fe Based Superalloy. Materials Reports, 2024, 38(18): 23050036-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb. 23050036  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23050036
1 Wang Q, Wang W L, Liu M, et al. Thermal Power Generation, 2021, 50(2), 1 (in Chinese).
王倩, 王卫良, 刘敏, 等. 热力发电, 2021, 50(2), 1.
2 Zhong L, Xiao P, Jiang J Z, et al. Proceedings of the CSEE, 2017, 37(6), 1739 (in Chinese).
钟犁, 肖平, 江建忠, 等. 中国电机工程学报, 2017, 37(6), 1739.
3 Fan H, Zhang Z, Dong J, et al. Thermal Science & Engineering Progress, 2018, 5, 364.
4 Zhou R Y, Zhu L H, Yang Y T, et al. Metallurgical and Materials Transactions A, 2018, 49, 6290.
5 Zhang X. Power Equipment, 2015, 29(6), 439 (in Chinese).
张显. 发电设备, 2015, 29(6), 439.
6 Yuan Y, Dang Y Y, Yang Z, et al. Materials for Mechanical Engineering. 2020, 44(1), 44 (in Chinese).
袁勇, 党莹樱, 杨珍, 等. 机械工程材料, 2020, 44(1), 44.
7 Xiang X M, Dong J X, Jang H, et al. Rare Metal Materials and Engineering, 2019, 48(3), 865 (in Chinese).
向雪梅, 董建新, 江河, 等. 稀有金属材料与工程, 2019, 48(3), 865.
8 Wu Y, Qin X, Wang C, et al. Journal of Materials Science and Technology, 2020, 60, 61.
9 Zhang P, Yuan Y, Zhong L, et al. Materialia, 2021(139), 101061.
10 Zhu C Z, Yuan Y, Bai J M, et al. Materials Science and Engineering A, 2018, 71, 740.
11 Lifshitz I M, Slyozov V. Journal of Physics & Chemistry of Solids, 1961, 19(1), 35.
12 Moshtaghin R S, Asgari S. Materials & Design, 2003, 24(5), 325.
13 Tiley J, Viswanathan G B, Srinivasan R, et al. Acta Materialia, 2009, 57(8), 2538.
14 Gust W, Hintz M B, Loddwg A, et al. Physica Status Solidi (a), 1981, 64(1), 187.
15 Jung S B, Yamane T, Minamino Y, et al. Journal of Materials Science Letters, 1992, 11(20), 1333.
16 Qin X Z, Guo J T, Yuan C, et al. Metallurgical and Materials Transactions A, 2007, 38(12), 3014.
17 Sluytman J, Pollock T M. Acta Materialia, 2012, 60(4), 1771.
18 Hättestrand M, Schwind M, Andrén H O. Materials Science & Engineering A, 1998, 250(1), 27.
19 Zheng L G, Hu X Q, Kang X H, et al. Acta Metallurgica Sinica, 2013, 49(9), 1081 (in Chinese).
郑雷钢, 胡小强, 康秀红, 等. 金属学报, 2013, 49(9), 1081.
20 Matsunaga T, Hongo H, Tabuchi M, et al. Materials Science and Engineering, 2019, 760(8), 267.
[1] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[2] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[3] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[4] 韩成, 曹睿. 硼在钢中的作用及表征方式[J]. 材料导报, 2022, 36(Z1): 21080164-4.
[5] 宋婕, 常英珂, 吴瑞德, 李琳, 张程煜. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 36(4): 20120015-5.
[6] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[7] 董万龙, 曹睿, 蒋勇, 杨飞, 黄义芳, 徐晓龙, 陈剑虹. Cr-Mo-V耐热钢焊条电弧焊焊缝金属低温冲击韧性研究[J]. 材料导报, 2022, 36(15): 20120001-5.
[8] 陆由付, 王朝辉, 王学成, 樊振通, 肖绪荡. 桥面现浇混凝土细微裂缝用环氧灌浆材料的环境适应性[J]. 材料导报, 2022, 36(1): 20090252-7.
[9] 陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
[10] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[11] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[12] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[13] 张建斌, 刘帆, 薛飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1318-1322.
[14] 张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
[15] 张文凤, 邹爱成, 刘运强, 叶东, 刘晓刚, 严伟. 新型多尺度碳氮化物强化马氏体耐热钢的稳定性[J]. 材料导报, 2018, 32(20): 3606-3611.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed